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ABSTRACT

Large language models (LLMs) have exhibited impressive zero-shot performance
on inference tasks. However, LLMs may suffer from spurious correlations be-
tween input texts and output labels, which limits LLMs’ ability to reason based
purely on general language understanding. In other words, LLMs may make pre-
dictions primarily based on premise or hypothesis, rather than both components.
To address this problem that may lead to unexpected performance degradation, we
propose task calibration (TC), a zero-shot and inference-only calibration method
inspired by mutual information which recovers LLM performance through task
reformulation. TC encourages LLMs to reason based on both premise and hy-
pothesis, while mitigating the models’ over-reliance on individual premise or hy-
pothesis for inference. Experimental results show that TC achieves a substantial
improvement on 13 inference tasks in the zero-shot setup. We further validate the
effectiveness of TC in few-shot setups and various natural language understanding
tasks. Further analysis indicates that TC is also robust to prompt templates and
has the potential to be integrated with other calibration methods.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023 |(Chowdhery et al., [2024; |/Abdin et al., [2024)
have demonstrated strong generalization ability to excel in a wide range of downstream tasks. In
particular, prompt-based learning has been an effective paradigm for LLMs, enabling zero-shot or
few-shot learning (Brown et al.l [2020; [Liu et al.| [2023)). Ideally, an LLM with advanced language
understanding capabilities could perform natural language inference (NLI) in a zero-shot setting
without relying on annotated examples. However, research has shown that zero-shot capabilities of
models on inference tasks are currently constrained by the presence of spurious correlations that
often lead to biased prediction (McKenna et al., 2023)).

To mitigate spurious correlations, previous work (Zhao et al., [2021; Holtzman et al.} 2021} |Fei et al.}
2023} |Han et al. 2023} Zhou et al., 2024) has explored model calibration, which reweighs output
probabilities based on various bias estimators. However, existing calibration methods fall short of
addressing the bias that stems from LLMs’ reliance on either the premise or hypothesis for prediction
(McKenna et al.| [2023)), which we call preference bias. This limits their capacity to generalize in
inference tasks. Figure|l|shows an example from QNLI dataset (Rajpurkar et al., 2016), where the
task is to determine whether a given context sentence contains the answer to a given question. We
observe that the model prediction is incorrect because it relies excessively on the question itself
when making the prediction in this example.

Motivated by this observation, we propose task calibration (TC), a zero-shot and inference-only
calibration method. Our work is inspired by mutual information (Tishby et al., [1999; Peng et al.,
2005), which measures how much one random variable tells us about another. Intuitively, for a
specific task, proper use of mutual information can reveal how much more informative the com-
bined presence of premise and hypothesis is concerning the label, compared to their individual
presences. Based on this insight, we reformulate LLM inference by factoring out the probabilities
of premise-only and hypothesis-only inputs. TC requires no annotated data and is easy to imple-
ment, involving only two extra inference stages using premise-only and hypothesis-only inputs for
each sample. As shown in Figure|l] although the model’s initial answer is incorrect, it finally makes



Under review as a conference paper at ICLR 2025

Sentence-Only:

Prompt: {Sentence} contains the answer 10
to {Question}. true or false? W 0.5 « . .
00 s Task Calibration:
Sentence: Consultant ph ists most e false 0
entence: Consultant pharmacists mos Question-Only: 1.
typically work in nursing homes, but are 10
increasingly branching into other insti- 05 05
tutions and non-institutional settings. 0.0
. o Model ' true false |
Question: Where do a majority of con- Inference Both: 00 ; fal
sultant pharmacists tend to work? 1.0 rue alse
05
Golden: true
true false

Figure 1: An example from QNLI dataset (Rajpurkar et al., 2016)). Sentence-Only, Question-Only
and Both indicate the inputs with only the sentence, question and using both components, respec-
tively. While the initial model prediction is incorrect, potentially due to the influence of the hypoth-
esis, we observe that task calibration finally leads to a correct prediction.

the correct prediction after task calibration, by using output probabilities derived from premise-only,
hypothesis-only, and combined inputs.

Experimental results demonstrate superior performance of TC over other calibration methods in the
zero-shot setup, showcasing a noteworthy boost of three different LLMs on 13 inference datasets.
Specifically, TC outperforms the best-performing baseline in 12, 9 and 10 out of 13 datasets on
the Mistral-7B-Instruct-v0.3, Llama-2-7B-chat and Phi-3-mini-4k-instruct models, respectively. In
addition, TC is robust to various prompt templates, demonstrating its effectiveness in few-shot setups
and 4 different natural language understanding (NLU) tasks such as sentiment analysis and hate
speech detection. Finally, we find that the combination of TC and other calibration methods can yield
better performance, which indicates their complementary strengths in fixing spurious correlations.

To summarize, our key contributions are as follows:

* We are the first to consider the synergistic effect of premise and hypothesis over their
individual effects in model calibration.

* We propose task calibration (TC), a zero-shot and inference-only calibration method, which
alleviates the bias in LLMs that arises from an over-reliance on either the premise or hy-
pothesis for prediction.

* We show that TC achieves state-of-the-art performance on 13 inference datasets in the
zero-shot setup. TC is robust to prompt templates, and also demonstrates its effectiveness
in few-shot setups and 4 different NLU tasks.

2 RELATED WORK

Spurious Correlations in Inference Tasks. The issue of spurious correlations between labels and
some input signals has attracted considerable attention in the NLP field. It has been shown that a
model that only has access to the hypothesis can perform surprisingly well on NLI tasks, suggesting
the existence of hypothesis-only bias within the datasets (Poliak et al.,2018; |Gururangan et al.,2018;,
Tsuchiya, 2018} |Glockner et al.l 2018). Similar bias can be observed in QA (Kaushik & Lipton,
2018 [Patel et al.| 2021)), fact verification (Schuster et al.,[2019) and stance detection (Kaushal et al.,
2021) tasks, where models can achieve remarkable performance without considering any question,
evidence and target, respectively. Recently, [McKenna et al.| (2023) identify the attestation bias,
where LLMs falsely label NLI samples as entailment when the hypothesis is attested in training
data. In Section [d] we observe that, when provided with premise-only or hypothesis-only inputs,
LLMs often struggle to predict not_entailment, and frequently make identical predictions with those
using both components. This indicates the potential existence of preference bias that enables LLMs
to perform inference without relying on both premise and hypothesis.
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Calibration of Language Models. Previous attempts to mitigate spurious correlations include
training a debiased model with residual fitting (He et al.,[2019)) or a debiased training set (Wu et al.
2022). However, these methods necessitate fine-tuning, and thus pose challenges for pursuing effi-
cient LLMs. Zhao et al.| (2021) propose contextual calibration (CC), which first estimates the bias
of language models with a content-free test input, and then counteracts the bias by calibrating the
output distribution. [Holtzman et al.[(2021) find that different surface forms compete for probability
mass. Such competition can be greatly compensated by a scoring choice using domain conditional
pointwise mutual information (DCPMI) that reweighs the model predictions. [Fei et al.[(2023)) further
identify the domain-label bias and propose a domain-context calibration method (DC) that estimates
the label bias using random in-domain words from the task corpus. [Han et al.| (2023)) propose pro-
totypical calibration to learn a decision boundary with Gaussian mixture models for zero-shot and
few-shot classification. Zhou et al.|(2024)) propose batch calibration (BC) to estimate the contextual
bias for each class from a batch and obtain the calibrated probability by dividing the output prob-
ability over the contextual prior. In contrast, we tackle the problem from a different perspective of
task reformulation, which mitigates bias while recovering model performance across challenging
inference tasks.

3 EXPERIMENTAL SETUP

Datasets. We conduct experiments on 17 text classification datasets that cover a wide range of
tasks. Specifically, for standard inference task, we consider natural language inference: RTE (Dagan
et al.,|2005), WNLI (Levesque et al.,[2011)), SciTail (Khot et al., 2018), CB (Marnefte et al.,|2019),
MNLI (Williams et al 2018)) and QNLI (Rajpurkar et al.| |2016)); stance detection: Perspectrum
(Chen et al.,|2019), IBM30K (Gretz et al.| [2020), EZ-Stance (Zhao & Carageal 2024), IAM (Cheng
et al., 2022) and VAST (Allaway & McKeownl, |2020); paraphrasing: PAWS (Zhang et al., 2019)
and QQP. To indicate the effectiveness of TC on other tasks, we follow the experimental setting
that adopts a textual entailment formulation in previous work (Yin et al. [2019; Ma et al.| [2021])
and additionally consider sentiment classification: SST-2 (Socher et al., 2013)); offensive language
identification: OffensEval (Barbieri et al., 2020); hate speech detection: HatEval (Barbieri et al.,
2020) and HateSpeech18 (de Gibert et al.|[2018). RTE, WNLI, CB, MNLI, QNLI and QQP datasets
used for evaluation are drawn from the GLUE (Wang et al., [2018)) and SuperGLUE (Wang et al.,
2019) benchmarks. More details of these datasets can be found in Table [6] of Appendix. We use
the test set for evaluation except for GLUE and SuperGLUE datasets, for which we use the full
validation set for evaluation. Note that we exclude datasets such as OpenBookQA (Mihaylov et al.,
2018) and NQ (Kwiatkowski et al.| [2019), since we aim to assess LLMs’ ability to reason based
purely on general language understanding, not prior knowledge.

Baselines. We compare TC with the original LM and previous calibration methods, including CC
(Zhao et al.l [2021]), DCPMI (Holtzman et al., 2021), DC (Fei et al., [2023) and BC (Zhou et al.,
2024)). These methods are discussed in Section [2| and their scoring functions are shown in Table
We follow the same setup with original papers in the implementation. For CC, we average the
probabilities from three content-free inputs: ‘N/A’, ‘[MASK]’, and the empty string. For DCPMI,
we adopt the same domain premise (e.g., ‘true or false? Answer:’) on inference datasets. For DC,
we sample the same number (i.e., 20) of random texts for estimating model’s prior. For BC, we
compute the correction log-probability once after all test samples are seen as suggested.

Model and Implementation Details. We conduct experiments mainly on three instruction-tuned
models including Mistral-7B-Instruct-v0.3'| (Jiang et al., [2023)), Llama-2-7B-cha (Touvron et al.,
2023)) and Phi-3-mini-4k-instruct (3.8B) ﬂ (Abdin et al., [2024). For all experiments, unless stated
otherwise, we perform the evaluation in the zero-shot setting. In the few-shot setting, we use n =
1-4 example(s) sampled randomly from the training set to construct the context prompt and evaluate
five times using different random seeds. The templates and label names used for all datasets can
be found in Table [/| of Appendix. We conduct the evaluation on an NVIDIA RTX A6000 GPU for
all models. Following prior work (Fei et al.|l [2023; |[Zhou et al.| [2024), we use the accuracy as the
evaluation metric except for stance detection datasets, for which we use the Macro-F1 score.

'https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
Zhttps://huggingface.co/meta-1llama/Llama-2-13b-chat-hf
*https://huggingface.co/microsoft/Phi-3-mini-4k-instruct


https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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4 PREFERENCE BIAS

Without loss of generality, we use NLI as the main target for discussion in this section and Section|[5]
despite that our method can be used in other tasks. NLI requires distinct types of reasoning
ravdi et al, [2003), with the ideal inference depending on both premise and hypothesis
2018). Here, we empirically demonstrate LLMSs’ preference bias, which refers to a model’s ten-
dency to perform inference tasks without relying on both the premise and the hypothesis. This bias
may potentially lead to performance degradation on out-of-distribution inference tasks.
let al| identify the attestation bias, which can be seen as a special case of preference bias
where LLMs falsely associate the hypothesis with entailment.

—

We explore the preference bias from a novel viewpoint, i.e., we examine whether LLMs can accu-
rately predict not_entailment when the premise or hypothesis is absent from the input. Specifically,
we evaluate Mistral-7B-Instruct-v0.3 on binary NLI tasks RTE (Dagan et al.} [2003), SciTail
and QNLI (Rajpurkar et al 2016) datasets where outputs include not_entailment or
entailment. Ideally, LLMs should be able to discern the absence of premise or hypothesis and make
predictions on not_entailment. As shown in Figure 2] Mistral-7B-Instruct-v0.3 exhibits a tendency to
associate premise-only or hypothesis-only inputs with labels other than not_entailment, as evidenced
by the gap between the bars and the ideal value (i.e., 100%). It suggests the existence of spurious
correlations (which we call preference bias) that can distract LLMs from relying on both premise and
hypothesis when making predictions. In addition, the performance of LLMs on premise-only and
hypothesis-only inputs varies across datasets. For example, Mistral-7B-Instruct-v0.3 exhibits supe-
rior performance in the premise-only setting for SciTail and performs better in the hypothesis-only
setting for RTE.

Building upon the observation, we further investigate the correlation between incorrect LLM predic-
tions (using both premise and hypothesis) and the labels derived from premise-only or hypothesis-
only inputs. Results are shown in Figure [3] We observe that LLM predictions based solely on the
premise or the hypothesis frequently align with incorrect predictions of using both components. For
example, in the SciTail dataset, over 90% of incorrect LLM predictions align with the labels ob-
tained from hypothesis-only inputs. It reveals that the LLM excessively relies on the premise or
hypothesis alone when making predictions.

Mistral-7B-Instruct-v0.3 Mistral-7B-Instruct-v0.3
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Figure 2: The percentage of LLM predictions
on label not_entailment (NLI) with premise-
only and hypothesis-only inputs. Higher value

Figure 3: The percentage of erroneous LLM
predictions that align with the labels derived
from premise-only or hypothesis-only inputs.

indicates low bias. Higher value indicates high correlation.

5 TASK CALIBRATION

5.1 PROBLEM FORMULATION

Prompting has emerged as an effective strategy for LLMs to perform zero-shot inference with hu-
man instructions. For an NLI task, denoting a sentence pair (x,,2;) and a possible label y for
inference tasks, LLMs make prediction by calculating: arg max,cy p(y|z,, zp), where ) denotes
the verbalizers that define the label set of C classes, and p € R is the prediction probability.
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Table 1: Comparison of scoring functions between task calibration (TC) and each calibration base-
line on inference tasks. The example is selected from the RTE dataset (Dagan et al.| [2005).

Text: Baselines:

Premise (x,,): Mount Olympus towers up from Probability (LLM)

the center of the earth arg max,, cyp(ylrp, Th)
Hypothesis (x5,): Mount Olympus is in the center ~ Contextual Calibration (CC)

of the earth arg max, ¢, wp(y|zp, Th) + b
Template: {} entails {}. true or false? Answer: ~ Domain Conditional PMI (DCPMI)

Domain Text (x, . ): true or false? Answer: rg max 2lylzp.on)
( domam) arg a yey P(¥|Zdomain)

Random Text (Zranq,): {random in-domain text Domain-context Calibration (DC)

: p(ylzp,Th)
for the premise } arg max, .y, o P———
Random Text (2, ): {random in-domain text Batch Calibration (BC)

for the hypothesis} ae Mxyey T zféyllrp'?;};i,m

Our Method: Task Calibration (TC)

Tp,T 2
arg max,, cyp(y|zp, Tn) log(%)

5.2 MUTUAL INFORMATION IN CALIBRATION

To factor out the probability of specific surface forms, Holtzman et al.|(2021) propose domain con-
ditional PMI (DCPMI) to indicate the extent to which the input text is related to the answer within a
domain. This concept is articulated in the context of inference tasks as follows:

p(y | zp, n)
arg max,, .,PMIpc = arg max log < , (D
& Miyey T My 8\ By | Zdoman)
where Z4omain denotes a short domain-relevant string, which is fixed for a specific task. An example
of Zgomain 1S Shown in Tablem Then, the mutual information of applying DCPMI to the task can be
written as:

Mipc = > play,@n,y)log (;WM,)) o)

Tp,Th,Y p(y | xdomain)

However, DCPMI calibrates model predictions with content-free tokens (i.e., Zdomain), Which may
introduce additional biases that lead to biased predictions (Zhou et al., [2024)). Moreover, MIpc fails
to take preference bias into considerations, which may account for the failures in Section [6]

5.3 REFORMULATION OF INFERENCE TASKS

Given two random variables A and B, their mutual information is defined in terms of their proba-
bilistic density functions p(a), p(b), and p(a, b):

I(A; B) // ablog( (() ?Z))d db. 3)

I(A; B) is a measure of the mutual dependence between A and B, reflecting the reduction in uncer-
tainty of one variable through knowledge of the other. Inspired by the concept of mutual information
(Tishby et al.,|1999; |Peng et al., 2005)), we introduce (Xp7 Xp;Y) to indicate the joint dependency
of inputs (i.e., premise and hypothesis) on the target class. Ideally, LLMs should depend on both
premise and hypothesis to make predictions on inference tasks. However, as discussed in Section
LLMs with only x,, or z, as input can still predict entailment on NLI datasets, indicating the
existence of spurious correlations between labels and texts that may limit the reasoning ability of
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LLMs. To mitigate the models’ excessive reliance on solely x,, or x;, when making predictions, we
propose task calibration (TC), which defines Mlrc as follows:

1 1
Mlrc := I(X,, X3} Y) — §I(XP;Y) — §I(Xh;Y)
py|zp,xn) 1. plylap) 1. py|as)
= p(xp, xp,y) |log ————= — —log —————* — —log ————
2 Py ony) { p(v) 2 ply) 2 p(y)

Tp,Th,Y

p(y | Lp, xh)
- o)l ! )
mpg,yp(xp oroios (\/p(y | 2p)p(y | xh))

where p(y|x,) and p(y|z,) denote the prediction probabilities of using only premise and hypoth-
esis as input, respectively. Since Figure [2] reveals the presence of bias towards both premise-only
and hypothesis-only inputs, we assign an equal weight of 0.5 to both components. MlIypc quantifies
the joint dependency of X, and X}, on Y, beyond their individual dependencies. In essence, Mlrc
highlights the synergistic effect of X,, and X}, in predicting Y, rather than their separate contribu-
tions. Instead of directly using arg maxyey p(y|xp, x5) as the scoring function, TC reformulates
the inference tasks as:

p(y | xp,xh)2
py [ p)ply [ zn)”

Note that we remove the square root from Equation [] for more natural expression. TC is an
inference-only method that requires no fine-tuning and annotated data. It brings only two additional
inferences of p(y|x,) and p(y|zy) for each sample. We compare the TC with previous calibration
methods in Table[T} Unlike previous methods, which calibrate model predictions by either relying on
content-free tokens or estimating contextual priors, TC mitigates the effects of spurious correlations
by reducing LLMSs’ reliance on individual z;, or x}, through task formulation.

®)

arg max, cyp(y | zp, zn) log(

5.4 TASK CALIBRATION ON INFERENCE TASKS

As discussed in Section 3] our evaluation focuses primarily on NLI, stance detection and paraphras-
ing tasks. Concretely, x,, and x}, represent the premise and the hypothesis in NLI tasks, respectively.
An example is shown in Figure[I] where Sentence and Question can be seen as the premise and the
hypothesis, respectively. In stance detection tasks, x;, and x}, correspond to the text and the target (or
claim), respectively. For example, the text “College exposes students to diverse people and ideas.”
can be considered as x;, and the claim “College education is worth it.” can be seen as xj,. Similarly,
xp and x, represent different sentences in paraphrasing tasks. For instance, the queries “What was
the deadliest battle in history?” and “What was the bloodiest battle in history?” can be seen as the
xp and 2y, respectively.

6 EXPERIMENTS

6.1 MAIN RESULTS

Zero-Shot Experiments on Inference Tasks. We report the zero-shot performance of Mistral-7B-
Instruct-v0.3, Llama-2-7B-chat and Phi-3-mini-4k-instruct across a diverse set of inference tasks
in Table 2] Notably, TC consistently outperforms the original LLM (without calibration) across
all datasets on all LLMs. In some cases, the absolute improvement can be over 40% and 20%,
respectively, like Mistral-7B-Instruct-v0.3 on CB and Llama-2-7B-chat on SciTail in Table It
indicates that our proposed TC unleashes the potential of LLMs by mitigating spurious correlations
that often lead to biased predictions. In addition, TC shows promising improvements over state-of-
the-art calibration methods, surpassing them in 12, 9 and 10 out of 13 datasets on the Mistral-7B-
Instruct-v0.3, Llama-2-7B-chat and Phi-3-mini-4k-instruct models, respectively. It is noteworthy
that TC demonstrates stable performance improvements, in contrast to previous baselines which
exhibit significant fluctuations in performance across tasks, often leading to frequent and notable
performance degradation.

Few-Shot Experiments. While our primary focus in this paper is on zero-shot inference, TC can
be also applied to few-shot scenarios. In Figure {4, we report n-shot (n ranges from 1 to 4) results
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Table 2: Results using Mistral-7b-Instruct-v0.3, Llama-2-7B-chat and Phi-3-mini-4k-instruct for
zero-shot inference on 13 datasets. ‘Original’ indicates the LLM predictions without using any
calibration method, which are determined by selecting the class with the highest probability. The
best and second-best results are marked in bold fonts and ranked by color.

Dataset RTE WNLI SciTail CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

Original 74.4 704 60.5 60.7 664 748 58.0 580 31.1 78.0 443 584 50.6

CC 76.2 718 62.6 66.1 669 758 583 584 338 772 483 61.6 46.8
DCPMI 76.5 69.0 63.0 625 667 763 513 541 327 76.7 438 51.7 52.0
DC 73.6 704 584 732 647 724 64.0 60.1 338 772 4777 584 497
BC 74.7 704 61.7 643 667 753 619 589 344 782 501 613 504
TC 78.0 73.2 643 821 681 778 654 698 360 795 494 63.0 549

Llama-2-7B-chat

Original 53.1 437 399 464 37.6 495 428 437 221 514 223 442 532

CC 56.0 45.1 40.7 375 430 50.1 457 471 273 564 308 443 537
DCPMI 56.3 451 40.7 196 38.0 50.1 46.5 48.0 260 575 255 528 258
DC 56.0 57.7 48.6 429 46.8 566 499 484 210 655 22.1 444  54.0
BC 60.6 64.8 509 50.0 465 591 516 493 299 603 303 522 538
TC 57.0 62.0 634 554 453 648 520 523 304 575 311 585 553

Phi-3-mini-4k-instruct

Original 70.8  71.8 619 393 589 727 603 52.
S

CC 69.7 718 62.7 107 366 714 51.0 454

DCPMI 71.1  76.1 553 768 545 75.0 413 392 378 734 477 809 50.0
DC 72.2  66.2 492 0643 668 662 599 554 367 713 395 81.8 518
BC 71.1 732 659 0643 637 748 644 589 369 727 499 81.8 4938
TC 73.6 74.6 643 839 599 785 669 660 394 757 519 83.0 547
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Figure 4: The few-shot performance of Mistral-7B-Instruct-v0.3 using various calibration methods
over the number of in-context learning (ICL) shots. Lines and shades denote the mean and standard
deviation, respectively, for 5 randomly sampled sets used for few-shot inference.

of Mistral-7b-Instruct-v0.3 on CB, RTE, PAWS and VAST datasets. We present the average results
of five randomly sampled sets of n examples drawn from the training set, along with their standard
deviations. The overall trend reveals that our proposed TC again outperforms baseline methods
on these datasets with low variance, indicating its strong generalization ability. We also observe
a general trend of improved performance with an increased number of shots, and the performance
gap between TC and original LLM suggests that TC enables LLMs to more effectively leverage
in-context demonstrations.
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Mistral-7B-Instruct-v0.3

Llama-2-7B-chat Phi-3-mini-4k-instruct

rrrrrr *

CB RTE PAWS VAST CB RTE PAWS VAST cB RTE PAWS VAST
Dataset Dataset Dataset

Figure 5: The means and standard deviations over the five different templates considered for CB,
RTE, PAWS and VAST datasets. ‘*’ indicates the significant improvement in performance over the
original LLM (paired t-test with p < 0.05).

Table 3: Zero-shot performance of Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct on additional
sentiment analysis, offensive language identification and hate speech detection tasks. The best and
second-best results are marked in bold fonts and ranked by color.

Model Mistral-7B-Instruct-v0.3 Phi-3-mini-4k-instruct

Method Ori. CC DCPMI DC BC TC |Ori.i CC DCPMI DC BC TC
SST-2 839 817 807 850 843 868|774 740 858  89.8 827 89.0
OffensEval 583 552 532 594 583 617|436 423 464 563 56.3 63.5
HatEval 61.2 60.1 59.6 623 622 665|367 366 370 546 559 63.5
HateSpeechl8 | 552 546 543 577 562 709|338 338 343 419 443 61.0

6.2 EFFECTIVENESS ANALYSIS

We conduct more experiments to verify the effectiveness of TC. The evaluation is performed under
the zero-shot setting for all experiments.

Robustness. We conduct the experiments across five different prompt templates (details of tem-
plates are shown in Table [§] of Appendix), and report the means and standard deviations on CB,
RTE, PAWS and VAST datasets. In Figure [5] we observe that TC shows consistent improvements
over the original LLM, often by a hefty margin, indicating that TC is more effective and robust to
various prompt templates. In addition, the results show that the model exhibits better performance
with specific templates, which suggests that a well-designed prompt template can further improve
the performance of TC. Overall, TC strengthens the stability of LLM predictions with regard to
prompt designs, thereby simplifying the task of prompt engineering.

Other NLU Tasks. To assess the generalization ability of TC, besides the inference tasks men-
tioned in Table [2) we consider three additional NLU tasks (sentiment analysis, offensive language
identification and hate speech detection) for evaluation. We reformulate the task definition to align
with the format of NLI. For example, with the HateSpeech18 dataset, we utilize the original input
text as the premise and take “the text expresses hate speech.” as the hypothesis. The details of prompt
templates are shown in Table[7of Appendix. Table[3|shows the performance of Mistral-7B-Instruct-
v0.3 and Phi-3-mini-4k-instruct on these tasks. We observe that TC improves the original LLM
by an average of 6.8% and 21.4% on Mistral-7B-Instruct-v0.3 and Phi-3-mini-4k-instruct models,
respectively. Furthermore, TC shows remarkable improvements over calibration methods on these
datasets. It suggests that TC significantly mitigates the inherent bias of LLMs, highlighting its po-
tential as a universally applicable method for addressing such bias across diverse tasks. We also
compare TC with baselines that directly prompt LLMs for classification, and results are shown in
Table[9] of Appendix.

6.3 BIAS ANALYSIS

Though previous calibration methods have demonstrated better performance over the original LLM,
we argue that these methods are not always optimal, which may not effectively mitigate the prefer-
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Table 4: Experimental results of zero-shot inference with TC using Mistral-7B-Instruct-v0.3, Llama-
2-7B-chat and Phi-3-mini-4k-instruct models. ‘+TC’ indicates the combination of TC with the pre-
vious calibration method. The best results are marked in bold fonts. Underlined scores indicate that
baseline+TC shows improvements over TC.

Dataset RTE WNLI SciTail CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

CC 762 718 626 66.1 669 758 583 584 338 772 483 61.6 468
+TC 783 746 645 821 68.0 782 655 699 363 793 500 635 55.0
DCPMI 76.5 69.0 63.0 625 667 763 513 541 327 767 438 51.7 520
+TC 783 746 647 804 678 785 640 694 340 793 485 622 548

DC 73.6 704 584 732 647 724 640 60.1 338 772 477 584 497
+TC 78.0 74.6 563 839 654 787 664 702 359 795 483 632 55.0
BC 74.7 704 61.7 643 667 753 619 589 344 782 501 613 504

+TC 77.6 74.6 654 696 0688 780 666 68.0 385 78.6 503 63.7 550

CC 56.0 45.1 40.7 375 430 501 457 471 273 564 308 443 537
+TC 563 634 636 554 474 647 523 528 315 573 319 585 552
DCPMI 563 45.1 40.7 196 380 50.1 465 480 260 575 255 528 258
+TC 56.7 634 63.6 464 470 648 524 53.0 304 573 303 589 54.7

DC 56.0 577 48.6 429 468 566 499 484 210 655 221 444 540
+TC 599 60.6 572 446 468 657 52.6 526 243 605 250 513 555
BC 60.6 64.8 509 500 465 591 516 493 299 603 303 522 538

+TC 66.1 66.2 577 536 477 675 531 536 33.6 645 308 583 55.7

+TC 729 74.6 647 839 588 78.6 66.7 66.0 39.2 75.7 52.6 83.0 54.7
DCPMI 71.1 76.1 553 768 545 750 413 392 378 734 477 809 50.0
+TC 74.0 732 63.0 839 590 780 661 661 375 753 444 83.0 547

DC 722 66.2 492 643 668 662 599 554 367 713 395 81.8 518
+TC 73.6 69.0 613 786 678 799 669 678 349 755 378 829 551
BC 711 732 659 643 637 748 644 589 369 727 499 81.8 498

+TC 72,6 76.1 654 786 69.2 818 682 684 39.0 748 524 825 541

ence bias in inference tasks. To further substantiate our claim, we conduct additional experiments by
applying each previous calibration method to predictions used in TC. For example, we first calibrate
the p(y|z,), p(y|xp) and p(y|x,, 1) with BC, and then perform the task calibration. Experimen-
tal results of three LLMs are shown in Table @l We find that almost all baseline methods exhibit
improved performance with TC on three models, as evidenced by the bold numbers in the table.
Compared to CC, DCPMI, and DC relying on content-free tokens that may introduce additional
biases (Zhou et al.| 2024)), TC encourages the model to reason based on both premise and hypothe-
sis, thereby achieving superior bias mitigation. BC computes the correction term once after all test
samples are seen, whereas TC computes the p(y|z,) and p(y|z;,) for each sample, which can be
seen as a more general instance-specific approach for calibration. In addition, we can also observe
that baseline+TC outperforms TC on multiple datasets, which indicates that contributions from task
reformulation do not fully overlap with previous methods on reducing the bias. We leave the further
exploration of integrating TC with other calibration methods in future work.
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Table 5: Examples of applying task calibration to predictions of Phi-3-mini-4k-instruct. ‘Ori.’ in-
dicates the original LLM prediction using both the sentence and the question as input. ‘S’ and ‘Q’
indicate LLM predictions using only the sentence and the question, respectively. All samples are
taken from QNLI dataset (Rajpurkar et al.| [2016). Correct answers are highlighted in bold.

Sentence Question Ori. S Q TC

1 In Afghanistan, the mujahideen’s victory What did the civil false true false true
against the Soviet Union in the 1980s did not war leave the state
lead to justice and prosperity, due to a vi- of Afghanistan’s
cious and destructive civil war between polit- economy in?
ical and tribal warlords, making Afghanistan
one of the poorest countries on earth.

2 Unlike a traditional community pharmacy Besides drugs, what true true true false
where prescriptions for any common medi- else do specialty phar-
cation can be brought in and filled, specialty macies provide?
pharmacies carry novel medications that need
to be properly stored, administered, carefully
monitored, and clinically managed.

3 Although parts of Sunnyside are within the Where is the neigh- true false false true
City of Fresno, much of the neighborhood is  borhood of Sunnyside
a “county island” within Fresno County. located in Fresno?

6.4 CASE STUDIES

To get a better impression of how TC works, we perform an in-depth analysis on QNLI and present
three examples in Table 5] Correct answers are highlighted in bold. Results show that TC accu-
rately predicts 61% of the instances that were initially misclassified by the original LLM using both
the sentence and the question as input on QNLI (Ex. 1-2). In the second example, despite the
incorrect predictions of ‘Original’, ‘S’ and ‘Q’, TC successfully identifies the correct label false,
which demonstrates the effectiveness of reducing LLMs’ reliance on individual component (i.e., the
sentence or the question) at inference time. However, we also observe that TC encounters failure
in some rare cases (Ex. 3), accounting for approximately 5% of the erroneous predictions by the
original LLM. As shown in the third example, TC fails to correct the LLM prediction when both
‘S’ and ‘Q’ provide the accurate predictions. Overall, we see that TC can effectively calibrate LLM
predictions by utilizing the predictions of the premise (sentence) and the hypothesis (question).

7 CONCLUSION AND LIMITATIONS

We proposed task calibration (TC), a zero-shot and inference-only calibration method that reformu-
lates inference tasks to mitigate the effects of spurious correlations. Experimental results show that
TC achieves state-of-the-art performance on 13 inference datasets under zero-shot setting. Further-
more, our method demonstrates its effectiveness in few-shot settings and other NLU tasks such as
hate speech detection. TC is also robust to various prompt templates and has the potential to be inte-
grated with other calibration methods. To our knowledge, we are the first to consider the synergistic
effect of premise and hypothesis over their individual effects in model calibration.

A limitation of our proposed method is that it requires extra computational cost owing to the use
of premise-only and hypothesis-only predictions at inference time, which could be alleviated with
model acceleration techniques such as pruning and quantization. In addition, our method may not
be fully compatible with closed-source LLMs such as GPT-4 and Claude-3 due to the potential lack
of access to prediction logits, which is also prevalent among most previous calibration methods. We
acknowledge that this is not an exhaustive study on all existing tasks, where further exploration of
extending our method to more diverse NLP tasks should be done in future work.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made detailed efforts throughout the paper. All
experimental setups, including benchmarks, the implementation of previous baselines, and model
details, are described in Section 3| In addition, we provide detailed dataset statistics in Appendix
and present all prompt templates in Appendix [B] Our code and data will be made publicly available
upon publication.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, and Harkirat Behl et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Emily Allaway and Kathleen McKeown. Zero-shot stance detection: A dataset and model using
generalized topic representations. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 8913-8931, 2020.

Francesco Barbieri, Jose Camacho-Collados, Luis Espinosa Anke, and Leonardo Neves. TweetE-
val: Unified benchmark and comparative evaluation for tweet classification. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 1644-1650, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, and Amanda et al. Askell. Language models
are few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877-1901, 2020.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch, and Dan Roth. Seeing things
from a different angle: Discovering diverse perspectives about claims. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 542-557, 2019.

Liying Cheng, Lidong Bing, Ruidan He, Qian Yu, Yan Zhang, and Luo Si. IAM: A comprehensive
and large-scale dataset for integrated argument mining tasks. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2277—
2287, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, and Sebastian et al. Gehrmann. Pal.M:
scaling language modeling with pathways. Journal of Machine Learning Research, 24(1), 2024.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Reinhard Stolle, and Daniel G. Bobrow. Entail-
ment, intensionality and text understanding. In Proceedings of the HLT-NAACL 2003 Workshop
on Text Meaning, pp. 38-45, 2003.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pp. 177-190. Springer, 2005.

Ona de Gibert, Naiara Perez, Aitor Garcia-Pablos, and Montse Cuadros. Hate speech dataset from
a white supremacy forum. In Proceedings of the 2nd Workshop on Abusive Language Online
(ALW2), pp. 11-20, 2018.

Yu Fei, Yifan Hou, Zeming Chen, and Antoine Bosselut. Mitigating label biases for in-context learn-
ing. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 14014-14031, 2023.

Max Glockner, Vered Shwartz, and Yoav Goldberg. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pp. 650-655, 2018.

Shai Gretz, Roni Friedman, Edo Cohen-Karlik, Assaf Toledo, Dan Lahav, Ranit Aharonov, and
Noam Slonim. A large-scale dataset for argument quality ranking: Construction and analysis. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 7805-7813, 2020.

11



Under review as a conference paper at ICLR 2025

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers), pp. 107-112, 2018.

Zhixiong Han, Yaru Hao, Li Dong, Yutao Sun, and Furu Wei. Prototypical calibration for few-shot
learning of language models. In The Eleventh International Conference on Learning Representa-
tions, 2023.

He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in natural language inference by fit-
ting the residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pp. 132-142, 2019.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and Luke Zettlemoyer. Surface form com-
petition: Why the highest probability answer isn’t always right. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 7038-7051, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, and Lucile Saulnier
et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ayush Kaushal, Avirup Saha, and Niloy Ganguly. tWT-WT: A dataset to assert the role of target
entities for detecting stance of tweets. In Proceedings of the 2021 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp- 3879-3889, 2021.

Divyansh Kaushik and Zachary C. Lipton. How much reading does reading comprehension re-
quire? a critical investigation of popular benchmarks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 5010-5015, 2018.

Tushar Khot, Ashish Sabharwal, and Peter Clark. SciTail: A textual entailment dataset from science
question answering. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, and Kenton et al. Lee. Natural questions:
A benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:452-466, 2019.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In

AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning, volume 46, pp.
47,2011.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1-35, 2023.

Tingting Ma, Jin-Ge Yao, Chin-Yew Lin, and Tiejun Zhao. Issues with entailment-based zero-shot
text classification. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 786-796, 2021.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung,
volume 23, pp. 107-124, 2019.

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Hosseini, Mark Johnson, and Mark Steed-
man. Sources of hallucination by large language models on inference tasks. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 2758-2774, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-

tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018.

12



Under review as a conference paper at ICLR 2025

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080-2094,
2021.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information:
Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(8):1226—1238, 2005.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 180-191, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383-2392, 2016.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel Roberto Filizzola Ortiz, Enrico Santus, and
Regina Barzilay. Towards debiasing fact verification models. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-1JCNLP), pp. 3419-3425, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631-1642, 2013.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing,
pp. 368-377, 1999.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, and Shruti Bhosale et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Masatoshi Tsuchiya. Performance impact caused by hidden bias of training data for recognizing tex-
tual entailment. In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018), 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353-355, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language

understanding systems. In Advances in Neural Information Processing Systems 32, pp. 3261—
3275, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112-1122, 2018.

Yuxiang Wu, Matt Gardner, Pontus Stenetorp, and Pradeep Dasigi. Generating data to mitigate
spurious correlations in natural language inference datasets. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2660—
2676, 2022.

Wenpeng Yin, Jamaal Hay, and Dan Roth. Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 3914-3923, 2019.

13



Under review as a conference paper at ICLR 2025

Bowen Zhang, Daijun Ding, Liwen Jing, Genan Dai, and Nan Yin. How would stance detection
techniques evolve after the launch of chatgpt? arXiv preprint arXiv:2212.14548, 2022.

Yuan Zhang, Jason Baldridge, and Luheng He. PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 1298-1308, 2019.

Chenye Zhao and Cornelia Caragea. EZ-STANCE: A large dataset for English zero-shot stance
detection. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15697-15714, 2024.

Chenye Zhao, Yingjie Li, Cornelia Caragea, and Yue Zhang. ZeroStance: Leveraging ChatGPT for
open-domain stance detection via dataset generation. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pp. 13390-13405, 2024.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Proceedings of the 38th International Conference
on Machine Learning, pp. 12697-12706, 2021.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu, Jilin Chen, Katherine Heller, and Subhrajit
Roy. Batch calibration: Rethinking calibration for in-context learning and prompt engineering.
In International Conference on Learning Representations, 2024.

A  DATASET STATISTICS

In the main experiments, we use 13 datasets falling into three categories: natural language inference,
stance detection and paraphrasing. We additionally consider sentiment analysis, offensive language
identification and hate speech detection to indicate the effectiveness of TC. We use the test set for
evaluation except for GLUE (Wang et al., 2018)) and SuperGLUE (Wang et al., 2019)) datasets (i.e.,
RTE, WNLI, CB, MNLI, QNLI, QQP and SST-2), for which we use the full validation set for
evaluation. We summarize the dataset statistics in Table

B PROMPT TEMPLATES

We show the templates and label names for all datasets in Table m For NLI tasks, we follow the
previous works (Holtzman et al., 2021} [Fe1 et al., 2023) and use true/false/neither as the label set.
For stance detection tasks, we use favor/against/neutral as the label set, which is consistent with
previous works (Zhang et al.| 2022} Zhao et al.,2024). The label neither or neutral is removed from
the label set for the binary classification tasks.

In addition, we show the templates and label names used in robustness experiments in Table [§]
Besides the original prompt as shown in Table [7} we introduce four additional templates and label
sets for each dataset to verify the robustness of TC towards various templates on inference tasks.

C DIRECT PROMPTING FOR CLASSIFICATION TASKS

Besides the experimental setting of task reformulation as discussed in Section[6.2] we also compare
TC with baselines in the setting of direct prompting. We follow the prompt templates and label sets
of previous work (Fei et al., 2023} |Zhou et al., 2024). Table|§| shows the performance of Mistral-7B-
Instruct-v0.3 and Phi-3-mini-4k-instruct under this setting. Results indicate that TC still achieves
the best performance on all datasets, which further validate our claim that TC has the potential to be
a universally applicable method for addressing spurious correlations across diverse tasks.

D AN ENSEMBLE OF PREMISE AND HYPOTHESIS CALIBRATION

We also consider ensembling the results of premise calibration and hypothesis calibration using
batch calibration (BC). Specifically, we individually calibrate premise and hypothesis predictions

14



Under review as a conference paper at ICLR 2025

Table 6: Details of the dataset used for evaluation in the Table[2l #Test denotes the number of test
samples. We consistently use the validation split as the test split for datasets where test labels are
not publicly available.

Dataset Task #Class #Test
RTE Natural Language Inference 2 277
WNLI Natural Language Inference 2 71
SciTail Natural Language Inference 2 2,126
CB Natural Language Inference 3 56
MNLI-M Natural Language Inference 3 9,815
MNLI-MM Natural Language Inference 3 9,832
QNLI Natural Language Inference 2 5,463
Perspectrum Stance Detection 2 2,773
IBM30K Stance Detection 2 6,315
EZ-Stance Stance Detection 3 7,798
IAM Stance Detection 2 527
VAST Stance Detection 3 1,460
PAWS Paraphrasing 2 8,000
QQP Paraphrasing 2 40,430
SST-2 Sentiment Analysis 2 872
OffensEval Offensive Language Identification 2 860
HatEval Hate Speech Detection 2 2,970
HateSpeech18 Hate Speech Detection 2 478

using BC and then aggregate the outputs. Results are shown in Table [I0} We can observe that TC
significantly outperforms this baseline (which we call BC-en) on all datasets across three LLMs,
which indicates the importance of the proposed mutual information method. The performance of
BC-en is worse than BC because NLI tasks require both premise and hypothesis information to infer
the entailment label.
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Table 7: Prompt templates for the main experiments on each task. The inputs are marked in {}.

Dataset Template Label

RTE {Premise} entails {Hypothesis}. true/false
true or false? Answer: {Label}

WNLI {Text 1} entails {Text 2}. true/false
true or false? Answer: {Label}

SciTail {Premise} entails {Hypothesis}. true/false
true or false? Answer: {Label}

CB {Premise}. Hypothesis: {Hypothesis}. true/false/neither
true, false or neither? Answer: {Label}

MNLI {Premise}. Hypothesis: {Hypothesis}. true/false/neither
true, false or neither? Answer: {Label}

QNLI {Text} contains the answer to {Question}. true/false
true or false? Answer: {Label}

Perspectrum What is the stance of {Text} on {Target}? favor/against/neutral
favor, against or neutral? Answer: {Label }

IBM30K What is the stance of {Text} on {Target}? favor/against/neutral
favor, against or neutral? Answer: {Label }

EZ-Stance What is the stance of {Text} on {Target}? favor/against/neutral
favor, against or neutral? Answer: {Label }

1AM {Claim} gives a favorable answer to {Topic}?  true/false
true or false? Answer: {Label}

VAST What is the stance of {Text} on {Target}? favor/against/neutral
favor, against or neutral? Answer: {Label }

PAWS Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false
Duplicate: true or false? Answer: {Label}

QQpP Question 1: {Text 1}. Question 2: {Text 2}. true/false
Duplicate: true or false? Answer: {Label}

SST-2 {Text} entails {Claim}. true/false
true or false? Answer: {Label}

OffensEval {Text} entails {Claim}. true/false
true or false? Answer: {Label}

HatEval {Text} entails {Claim}. true/false
true or false? Answer: {Label}

HateSpeech18  {Text} entails {Claim}. true/false

true or false? Answer: {Label}
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Table 8: Prompt templates for the robustness experiments on RTE, CB, VAST and PAWS datasets.
The inputs are marked in {}.

Dataset ID Template Label
RTE 1 {Premise} entails {Hypothesis}. true/false
true or false? Answer: {Label}
2 {Premise}. Hypothesis: {Hypothesis}. true/false
true or false? Answer: {Label}
3 {Premise}. Question: {Hypothesis}. true/false
true or false? Answer: {Label}
4 {Premise}. Question: {Hypothesis}. entailment/
entailment or contradiction? Answer: {Label} contradiction

5 Does the premise {Premise} entail the hypothesis {Hypothesis}? yes/no

yes or no? Answer: {Label}

CB 1 {Premise} entails {Hypothesis}. true/false/neither

true, false or neither? Answer: {Label}

2 {Premise}. Hypothesis: {Hypothesis}. true/false/neither
true, false or neither? Answer: {Label}

3 {Premise}. Question: {Hypothesis}. true/false/neither
true, false or neither? Answer: {Label}

4 {Premise}. Question: {Hypothesis}. contradiction/
entailment, contradiction or neutral? Answer: {Label} entailment/neutral

5 Does the premise {Premise} entail the hypothesis {Hypothesis}? yes/no/neither
yes, no or neither? Answer: {Label}
VAST 1  What is the stance of {Text} on {Target}? favor/against/neutral

favor, against or neutral? Answer: {Label }

2 What is the attitude of the sentence {Text} towards { Target}? favor/against/neutral
favor, against or neutral? Answer: {Label }

3 Does {Text} support {Target}? true/false/neither
true, false or neither? Answer: {Label}

4 {Text} supports {Target}. true/false/neither
true, false or neither? Answer: {Label}

5  Sentence: {Text}. Target: {Target}. favor/against/neutral
Stance: favor, against or neutral? Answer: {Label }

PAWS 1  Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Duplicate: true or false? Answer: {Label}

2 Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Is Sentence 2 the duplicate of Sentence 1?

true or false? Answer: {Label}

3 Text1: {Text 1}. Text2: {Text2}. true/false
Duplicate: true or false? Answer: {Label }
4 Sentence 1: {Text 1}. Sentence 2: {Text 2}. true/false

Equivalence: true or false? Answer: {Label }
5  Sentence 1: {Text 1}. Sentence 2: {Text 2}. yes/no

Duplicate: yes or no? Answer: {Label}
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Table 9: Zero-shot performance of Mistral-7b-Instruct-v0.3 and Phi-3-mini-4k-instruct on additional
sentiment analysis, offensive language identification and hate speech detection tasks in the direct
prompting setting. The best and second-best results are marked in bold fonts and ranked by color.

Model Mistral-7B-Instruct-v0.3 Phi-3-mini-4k-instruct

Method Orii CC DCPMI DC BC TC |Ori.i CC DCPMI DC BC TC
SST-2 72.9 753 82.8  81.7 83.1 86.8|84.9 841 84.1 84.1 84.6 89.0
OffensEval 529 369 410 577 53.6 61.7|41.8 42.6  36.1 413 424 63.5
HatEval 483 348 384 602 61.7 66.5|492 499 460 499 499 63.5
HateSpeechl8 | 63.6 489 537  67.5 693 709|594 579 597  60.2 599 61.0

Table 10: Comparison of TC with BC-en using Mistral-7b-Instruct-v0.3, Llama-2-7B-chat and Phi-
3-mini-4k-instruct for zero-shot inference on 13 datasets. The best results are marked in bold fonts.

Dataset RTE WNLI SciTaii CB MNLI QNLI Persp. IBM. EZ. IAM VAST PAWS QQP
Mistral-7B-Instruct-v0.3

BC 747 704 617 643 667 753 619 589 344 782 501 613 504
BC-en 592 493 46.9 250 36.0 49.1 51.8 385 277 579 373 47.7 334

TC 78.0 73.2 643 821 681 778 654 698 360 795 494 63.0 549
Llama-2-7B-chat

BC 606 648 509 500 465 591 516 493 200 603 303 520 538
BC-en 534 521 448 429 37.7 50.2 49.8 48.8 29.8 53.1 30.0 477 48.8
TC 57.0 620 634 554 453 648 520 523 304 575 311 585 553
Phi-3-mini-4k-instruct

BC 711 732 659 643 637 748 644 589 369 727 499 818 498
BC-en 56.7 57.7 56.0 26.8 35.7 499 554 424 30.6 649 38.1 51.9 436
TC 73.6 74.6 643 839 599 785 669 660 394 75.7 519 83.0 54.7
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